mirror of
https://github.com/cupcakearmy/advent-of-code.git
synced 2024-12-22 08:06:25 +00:00
120 lines
3.5 KiB
Python
120 lines
3.5 KiB
Python
#!/usr/bin/env python
|
|
|
|
import sys
|
|
from dataclasses import dataclass
|
|
from functools import lru_cache
|
|
from os.path import dirname, join
|
|
from typing import Union
|
|
|
|
# Day 15
|
|
|
|
# Common
|
|
|
|
|
|
def read_input(filename):
|
|
data = join(dirname(__file__), '..', filename)
|
|
with open(data) as f:
|
|
return f.read().strip()
|
|
|
|
|
|
test = read_input('test.txt')
|
|
data = read_input('input.txt')
|
|
|
|
|
|
@dataclass(unsafe_hash=True)
|
|
class Point:
|
|
x: int
|
|
y: int
|
|
|
|
@lru_cache(maxsize=None)
|
|
def manhattan(self, other: 'Point'):
|
|
return abs(self.x - other.x) + abs(self.y - other.y)
|
|
|
|
def tuning_freq(self) -> int:
|
|
return (self.x * 4000000) + self.y
|
|
|
|
@staticmethod
|
|
def parse(s: str) -> 'Point':
|
|
return Point(*map(lambda s: int(s[2:]), s.split(', '))) # Format: x=8, y=7
|
|
|
|
|
|
@dataclass
|
|
class Interval:
|
|
start: int
|
|
end: int
|
|
|
|
def __contains__(self, other: Union[int, 'Interval']) -> bool:
|
|
if type(other) is int:
|
|
return self.start <= other and other <= self.end
|
|
elif isinstance(other, Interval):
|
|
return other.start in self or other.end in self
|
|
return False
|
|
|
|
def __add__(self, other: 'Interval') -> 'Interval':
|
|
return Interval(min(self.start, other.start), max(self.end, other.end))
|
|
|
|
def __len__(self) -> int:
|
|
return abs(self.start - self.end) + 1
|
|
|
|
@staticmethod
|
|
def reduce(intervals: list['Interval']):
|
|
combined: list['Interval'] = []
|
|
for interval in intervals:
|
|
for added in combined:
|
|
if added in interval or interval in added:
|
|
combined.remove(added)
|
|
combined.append(added + interval)
|
|
break
|
|
else:
|
|
combined.append(interval)
|
|
return combined if combined == intervals else Interval.reduce(combined)
|
|
|
|
|
|
@dataclass
|
|
class Map:
|
|
sensors: dict[Point, Point]
|
|
max_distance: int
|
|
|
|
def analyse_line(self, line: int, minimum: int | float, maximum: int | float):
|
|
intervals: list[Interval] = []
|
|
for sensor, beacon in self.sensors.items():
|
|
radius = sensor.manhattan(beacon) # Radius of the sensor
|
|
dy = radius - abs(sensor.y - line) # Check if line is in the radius of the sensor
|
|
if dy >= 0:
|
|
# Add interval for scanned line
|
|
intervals.append(Interval(max(minimum, sensor.x-dy), min(maximum, sensor.x+dy)))
|
|
intervals = Interval.reduce(intervals)
|
|
return sum([len(i) for i in intervals]), intervals
|
|
|
|
def flag_1(self, line: int):
|
|
score, _ = self.analyse_line(line, float('-inf'), float('inf'))
|
|
return score - 1
|
|
|
|
def flag_2(self, limit: int) -> int:
|
|
for line in range(limit):
|
|
score, intervals = self.analyse_line(line, 0, limit)
|
|
if score != limit + 1:
|
|
print(line, intervals)
|
|
return Point(intervals[0].end + 1, line).tuning_freq()
|
|
raise Exception("Not found")
|
|
|
|
@ staticmethod
|
|
def parse(data: str) -> 'Map':
|
|
sensors: dict[Point, Point] = {}
|
|
max_distance = 0
|
|
for line in data.splitlines():
|
|
sensor, beacon = line.split(':')
|
|
s = Point.parse(sensor[10:])
|
|
b = Point.parse(beacon[22:])
|
|
sensors[s] = b
|
|
max_distance = max(max_distance, s.manhattan(b))
|
|
return Map(sensors, max_distance)
|
|
|
|
|
|
# Running
|
|
|
|
m = Map.parse(data)
|
|
print(m.flag_1(2000000))
|
|
print(Point(3446137, 3204480).tuning_freq())
|
|
# print(m.flag_2(4_000_000))
|