mirror of
https://github.com/cupcakearmy/advent-of-code.git
synced 2025-01-22 05:06:23 +00:00
15
This commit is contained in:
parent
f4fb4fb64f
commit
30fcda48fd
11
2022/15/README.md
Normal file
11
2022/15/README.md
Normal file
@ -0,0 +1,11 @@
|
||||
# 15
|
||||
|
||||
Ugly solution. The second part took me a good minute to compute. Each line is done quite efficiently, it could def. be improved by sorting out what lines we should consider in the first place.
|
||||
|
||||
<details>
|
||||
<summary>Solutions</summary>
|
||||
<ol>
|
||||
<li>1</li>
|
||||
<li>13784551204480</li>
|
||||
</ol>
|
||||
</details>
|
119
2022/15/python/main.py
Normal file
119
2022/15/python/main.py
Normal file
@ -0,0 +1,119 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from os.path import dirname, join
|
||||
from typing import Union
|
||||
|
||||
# Day 15
|
||||
|
||||
# Common
|
||||
|
||||
|
||||
def read_input(filename):
|
||||
data = join(dirname(__file__), '..', filename)
|
||||
with open(data) as f:
|
||||
return f.read().strip()
|
||||
|
||||
|
||||
test = read_input('test.txt')
|
||||
data = read_input('input.txt')
|
||||
|
||||
|
||||
@dataclass(unsafe_hash=True)
|
||||
class Point:
|
||||
x: int
|
||||
y: int
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def manhattan(self, other: 'Point'):
|
||||
return abs(self.x - other.x) + abs(self.y - other.y)
|
||||
|
||||
def tuning_freq(self) -> int:
|
||||
return (self.x * 4000000) + self.y
|
||||
|
||||
@staticmethod
|
||||
def parse(s: str) -> 'Point':
|
||||
return Point(*map(lambda s: int(s[2:]), s.split(', '))) # Format: x=8, y=7
|
||||
|
||||
|
||||
@dataclass
|
||||
class Interval:
|
||||
start: int
|
||||
end: int
|
||||
|
||||
def __contains__(self, other: Union[int, 'Interval']) -> bool:
|
||||
if type(other) is int:
|
||||
return self.start <= other and other <= self.end
|
||||
elif isinstance(other, Interval):
|
||||
return other.start in self or other.end in self
|
||||
return False
|
||||
|
||||
def __add__(self, other: 'Interval') -> 'Interval':
|
||||
return Interval(min(self.start, other.start), max(self.end, other.end))
|
||||
|
||||
def __len__(self) -> int:
|
||||
return abs(self.start - self.end) + 1
|
||||
|
||||
@staticmethod
|
||||
def reduce(intervals: list['Interval']):
|
||||
combined: list['Interval'] = []
|
||||
for interval in intervals:
|
||||
for added in combined:
|
||||
if added in interval or interval in added:
|
||||
combined.remove(added)
|
||||
combined.append(added + interval)
|
||||
break
|
||||
else:
|
||||
combined.append(interval)
|
||||
return combined if combined == intervals else Interval.reduce(combined)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Map:
|
||||
sensors: dict[Point, Point]
|
||||
max_distance: int
|
||||
|
||||
def analyse_line(self, line: int, minimum: int | float, maximum: int | float):
|
||||
intervals: list[Interval] = []
|
||||
for sensor, beacon in self.sensors.items():
|
||||
radius = sensor.manhattan(beacon) # Radius of the sensor
|
||||
dy = radius - abs(sensor.y - line) # Check if line is in the radius of the sensor
|
||||
if dy >= 0:
|
||||
# Add interval for scanned line
|
||||
intervals.append(Interval(max(minimum, sensor.x-dy), min(maximum, sensor.x+dy)))
|
||||
intervals = Interval.reduce(intervals)
|
||||
return sum([len(i) for i in intervals]), intervals
|
||||
|
||||
def flag_1(self, line: int):
|
||||
score, _ = self.analyse_line(line, float('-inf'), float('inf'))
|
||||
return score - 1
|
||||
|
||||
def flag_2(self, limit: int) -> int:
|
||||
for line in range(limit):
|
||||
score, intervals = self.analyse_line(line, 0, limit)
|
||||
if score != limit + 1:
|
||||
print(line, intervals)
|
||||
return Point(intervals[0].end + 1, line).tuning_freq()
|
||||
raise Exception("Not found")
|
||||
|
||||
@ staticmethod
|
||||
def parse(data: str) -> 'Map':
|
||||
sensors: dict[Point, Point] = {}
|
||||
max_distance = 0
|
||||
for line in data.splitlines():
|
||||
sensor, beacon = line.split(':')
|
||||
s = Point.parse(sensor[10:])
|
||||
b = Point.parse(beacon[22:])
|
||||
sensors[s] = b
|
||||
max_distance = max(max_distance, s.manhattan(b))
|
||||
return Map(sensors, max_distance)
|
||||
|
||||
|
||||
# Running
|
||||
|
||||
m = Map.parse(data)
|
||||
print(m.flag_1(2000000))
|
||||
print(Point(3446137, 3204480).tuning_freq())
|
||||
# print(m.flag_2(4_000_000))
|
Loading…
Reference in New Issue
Block a user