# -*- coding: utf-8 -*- """simple.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1CGpActfOTQuiUkle2q40rg8Bf7ijfyAU """ from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D from tensorflow.keras.utils import to_categorical (x_train, y_train), (x_test, y_test) = mnist.load_data() # Reshaping for channels_last (tensorflow) with one channel size = 28 print(x_train.shape, x_test.shape) x_train = x_train.reshape(len(x_train), size, size, 1).astype('float32') x_test = x_test.reshape(len(x_test), size, size, 1).astype('float32') print(x_train.shape, x_test.shape) # Normalize upper = max(x_train.max(), x_test.max()) lower = min(x_train.min(), x_test.min()) print(f'Max: {upper} Min: {lower}') x_train /= upper x_test /= upper total_classes = 10 y_train = to_categorical(y_train, total_classes) y_test = to_categorical(y_test, total_classes) # Make the model model = Sequential() model.add(Conv2D(64, (3, 3), activation='relu', input_shape=(size,size, 1), data_format='channels_last')) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(total_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train model.fit(x_train, y_train, batch_size=32, epochs=12, verbose=True) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) # Save for keras model.save("model.h5") !pip install tensorflowjs import tensorflowjs as tfjs # Save for the web tfjs.converters.save_keras_model(model, './js')