This commit is contained in:
cupcakearmy 2020-01-18 11:51:11 +01:00
parent 727f750aec
commit 7bd67d4079
3 changed files with 415 additions and 0 deletions

11
training/README.md Normal file
View File

@ -0,0 +1,11 @@
# Training code in python with keras
## Files
I included both the python notebook and the normal python code.
The code itself is the same in both files, just take the format you prefer.
## Training
The training is super simple. Just the basic hello world of machine learning. You can easily run it online in google colab for free on a gpu.

337
training/simple.ipynb Normal file
View File

@ -0,0 +1,337 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "simple.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "BeibK12dAiot",
"colab_type": "code",
"colab": {}
},
"source": [
"from tensorflow.keras.datasets import mnist\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout, Flatten\n",
"from tensorflow.keras.layers import Conv2D, MaxPooling2D\n",
"from tensorflow.keras.utils import to_categorical"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "VAUkfCwTA_Km",
"colab_type": "code",
"outputId": "8dabe82c-7999-49d6-d675-20979c006f10",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
}
},
"source": [
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
"11493376/11490434 [==============================] - 0s 0us/step\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "apDIDKb-BEjA",
"colab_type": "code",
"outputId": "6c25331a-2276-4d3d-9739-3acfb601c0dc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
}
},
"source": [
"# Reshaping for channels_last (tensorflow) with one channel\n",
"size = 28\n",
"print(x_train.shape, x_test.shape)\n",
"x_train = x_train.reshape(len(x_train), size, size, 1).astype('float32')\n",
"x_test = x_test.reshape(len(x_test), size, size, 1).astype('float32')\n",
"print(x_train.shape, x_test.shape)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"(60000, 28, 28) (10000, 28, 28)\n",
"(60000, 28, 28, 1) (10000, 28, 28, 1)\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "RwTWdxVbB6Wq",
"colab_type": "code",
"outputId": "1a75bb86-8e7b-425f-c064-2f12c8615d8c",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# Normalize\n",
"upper = max(x_train.max(), x_test.max())\n",
"lower = min(x_train.min(), x_test.min())\n",
"print(f'Max: {upper} Min: {lower}')\n",
"x_train /= upper\n",
"x_test /= upper"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Max: 255.0 Min: 0.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "lYQVq00XBacf",
"colab_type": "code",
"colab": {}
},
"source": [
"total_classes = 10\n",
"y_train = to_categorical(y_train, total_classes)\n",
"y_test = to_categorical(y_test, total_classes)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Ad2UK8LkBhKe",
"colab_type": "code",
"colab": {}
},
"source": [
"# Make the model\n",
"model = Sequential()\n",
"model.add(Conv2D(64, (3, 3), activation='relu', input_shape=(size,size, 1), data_format='channels_last'))\n",
"model.add(Conv2D(32, (3, 3), activation='relu'))\n",
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(Dropout(0.25))\n",
"model.add(Flatten())\n",
"model.add(Dense(128, activation='relu'))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(total_classes, activation='softmax'))\n",
"\n",
"model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "v4Vb1_CfEVIl",
"colab_type": "code",
"outputId": "f00919d7-56b6-4577-9c97-283a48cbf804",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 459
}
},
"source": [
"# Train\n",
"model.fit(x_train, y_train,\n",
" batch_size=32,\n",
" epochs=12,\n",
" verbose=True)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Train on 60000 samples\n",
"Epoch 1/12\n",
"60000/60000 [==============================] - 15s 256us/sample - loss: 0.2029 - acc: 0.9382\n",
"Epoch 2/12\n",
"60000/60000 [==============================] - 8s 133us/sample - loss: 0.0827 - acc: 0.9750\n",
"Epoch 3/12\n",
"60000/60000 [==============================] - 8s 134us/sample - loss: 0.0650 - acc: 0.9800\n",
"Epoch 4/12\n",
"60000/60000 [==============================] - 7s 123us/sample - loss: 0.0541 - acc: 0.9839\n",
"Epoch 5/12\n",
"60000/60000 [==============================] - 7s 123us/sample - loss: 0.0476 - acc: 0.9850\n",
"Epoch 6/12\n",
"60000/60000 [==============================] - 8s 130us/sample - loss: 0.0391 - acc: 0.9883\n",
"Epoch 7/12\n",
"60000/60000 [==============================] - 8s 128us/sample - loss: 0.0354 - acc: 0.9889\n",
"Epoch 8/12\n",
"60000/60000 [==============================] - 8s 128us/sample - loss: 0.0330 - acc: 0.9895\n",
"Epoch 9/12\n",
"60000/60000 [==============================] - 7s 122us/sample - loss: 0.0283 - acc: 0.9909\n",
"Epoch 10/12\n",
"60000/60000 [==============================] - 7s 122us/sample - loss: 0.0275 - acc: 0.9909\n",
"Epoch 11/12\n",
"60000/60000 [==============================] - 7s 122us/sample - loss: 0.0265 - acc: 0.9918\n",
"Epoch 12/12\n",
"60000/60000 [==============================] - 7s 123us/sample - loss: 0.0239 - acc: 0.9922\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x7fa5b027d278>"
]
},
"metadata": {
"tags": []
},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "BybcqHVqEaQD",
"colab_type": "code",
"outputId": "9b5a41a0-9420-4387-8a01-5462c40878bd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
}
},
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"print('Test loss:', score[0])\n",
"print('Test accuracy:', score[1])"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Test loss: 0.028924251638433304\n",
"Test accuracy: 0.9922\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NNnMBuoURyaX",
"colab_type": "code",
"colab": {}
},
"source": [
"# Save for keras\n",
"model.save(\"model.h5\")"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Ia7WzlH9_UxY",
"colab_type": "code",
"outputId": "1d61e90a-f2a8-4ef8-8df2-301d61a89c8d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 513
}
},
"source": [
"!pip install tensorflowjs\n",
"import tensorflowjs as tfjs\n",
"\n",
"# Save for the web\n",
"tfjs.converters.save_keras_model(model, './js')"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Requirement already satisfied: tensorflowjs in /usr/local/lib/python3.6/dist-packages (1.4.0)\n",
"Requirement already satisfied: six==1.11.0 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (1.11.0)\n",
"Requirement already satisfied: tensorflow==1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (1.15.0)\n",
"Requirement already satisfied: h5py==2.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (2.8.0)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (0.2.2)\n",
"Requirement already satisfied: tensorflow-hub==0.5.0 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (0.5.0)\n",
"Requirement already satisfied: numpy==1.16.4 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (1.16.4)\n",
"Requirement already satisfied: PyInquirer==1.0.3 in /usr/local/lib/python3.6/dist-packages (from tensorflowjs) (1.0.3)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (0.9.0)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (3.10.0)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.15.1)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (0.33.6)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.1.0)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.15.0)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (0.8.1)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.0.8)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.15.0)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (0.1.8)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (3.1.0)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.1.0)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.15.0->tensorflowjs) (1.11.2)\n",
"Requirement already satisfied: Pygments>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from PyInquirer==1.0.3->tensorflowjs) (2.5.2)\n",
"Requirement already satisfied: prompt-toolkit==1.0.14 in /usr/local/lib/python3.6/dist-packages (from PyInquirer==1.0.3->tensorflowjs) (1.0.14)\n",
"Requirement already satisfied: regex>=2016.11.21 in /usr/local/lib/python3.6/dist-packages (from PyInquirer==1.0.3->tensorflowjs) (2019.12.20)\n",
"Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tensorflow==1.15.0->tensorflowjs) (42.0.2)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0->tensorflowjs) (0.16.0)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow==1.15.0->tensorflowjs) (3.1.1)\n",
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit==1.0.14->PyInquirer==1.0.3->tensorflowjs) (0.1.8)\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NriyjqVh_ge9",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
}
]
}

67
training/simple.py Normal file
View File

@ -0,0 +1,67 @@
# -*- coding: utf-8 -*-
"""simple.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1CGpActfOTQuiUkle2q40rg8Bf7ijfyAU
"""
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.utils import to_categorical
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Reshaping for channels_last (tensorflow) with one channel
size = 28
print(x_train.shape, x_test.shape)
x_train = x_train.reshape(len(x_train), size, size, 1).astype('float32')
x_test = x_test.reshape(len(x_test), size, size, 1).astype('float32')
print(x_train.shape, x_test.shape)
# Normalize
upper = max(x_train.max(), x_test.max())
lower = min(x_train.min(), x_test.min())
print(f'Max: {upper} Min: {lower}')
x_train /= upper
x_test /= upper
total_classes = 10
y_train = to_categorical(y_train, total_classes)
y_test = to_categorical(y_test, total_classes)
# Make the model
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', input_shape=(size,size, 1), data_format='channels_last'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(total_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Train
model.fit(x_train, y_train,
batch_size=32,
epochs=12,
verbose=True)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
# Save for keras
model.save("model.h5")
!pip install tensorflowjs
import tensorflowjs as tfjs
# Save for the web
tfjs.converters.save_keras_model(model, './js')